1.数学怎样求证
教你多得分小技巧 :考试时草稿一定要认真有序的写,不要写乱,这便于你检查时少花时间,这对于填空题和选择题特别有用。
首先要申明:任何一门学问都没有速成的法门,都要靠一分汗水才有一分收获。我所能做的只是叫你少走点弯路而已,也仅此而已,望好自为之。
关于怎样学数学我看了很多网上对这个问题的回答,大都是一大篇一大篇的,表面上看似乎很专业、很有道理,但就是一点用处都没有,看了后没有一点帮助。为什么呢?因为大多数这些回答者没能分清对象,都不对着目标放箭,这叫做无的放矢。
他们忘了最根本的一点,那就是提出这个问题的人绝大多数都是数学没学好的,有的甚至连跟班都感到很困难,你跟他讲那么一大堆大道理有什么用呢?依我看还是来点简单实用点的好。如果你对数学这门课程感到很吃力,那么你应该:1,数学的基础很重要,数学这门课的特点是连惯性太强,每一个知识点就象我们上楼的每一级台阶,你某一个知识点没学好,就象那里少了一级台阶。
有的同学说,老师在课堂上讲我能听得懂,为什么做题时就是做不出来呢?这是因为课堂上老师讲好比开着灯上楼梯,虽然有一两级台阶没有(只要它们不连惯)还是能上去的,但做作业或考试时就象关着灯上楼梯,完全凭感觉走,没有任何人帮你指出哪里没有台阶,所以走到断级的时候不跌到才怪。那这种情况怎么办呢?唯一的办法只有把缺少了的那级台阶补上去。
其方法就是一定要抽出时间去看以前的课本,如果你拿某一本旧课本来看还是看不懂,那说明你要补的还在前面,暂时把这本书放下,去看更前面的旧课本。只到你能完全弄明白了为止,然后从这一本书一直往后看,直到你现在所学的课本。
我个人认为这比你为了完成任务而做作业重要得多,这才是你跟得上课程的根本保证。我有一个外孙女就是这种情况。
有一次她拿一道数学题来问我,那道题有四个知识点,我问她,她竟然一个都回答不了,我叫她先去看以前的课本上的相应部分再来做这个题,她竟然去问同学去了,结果当然是不了了之的把答案抄了一遍,完成了作业。还说我不如她的同学厉害,我只有苦笑(在这里我不由的又要报怨现在的教育起来了,作业,作业,做孽,对优生是一条拖后腿的绳,对差生是套牢脖子的绳。
当年我就是经常没能完成作业而。
这是题外话不说也罢)依我的看法,对于所谓的差生来说,花时间去学习以前被遗忘了的知识点比做作业要重要得多。
当然我不是在这叫大家都不要做作业,而是说要花适当的时间去自己给自己补课。2,要学好数学,兴趣最关键,人人都这么说。
但归根到底还是基础要好才可能产生兴趣,一个人不可能对那个让自己陷入困境的事情产生兴趣。所以成绩不好的同学还是要把时间多花在第一步上。
如果你是一名中学生,那么小学课本应当能看懂吧,你能看懂它,做小学的一些奥数题你一定会觉得其乐无穷。这样你就能培养起对数学的兴趣了。
有了光趣还有什么做不好呢!3,数学不是靠的死记硬背,要理解,怎样理解呢,还是在基础,所以成绩不好的同学还是要多把时间花在第一步上。对于公式的记忆呢,只要求能记住最基本的就行了,其余的要学会自己推导出来,我当年很多公式都记不住,但我能在考场上花上一两分钟就把需要的公式当场推导出来,这比你花死力气去死记要保险得多,而且绝对准确,这就叫做理解记忆,我与课本无缘已有一二十年了,但做题时所要的公式还是能根据它的定义把它推导出来。
所谓好钢用在刀刃上,就是这个意思,不要把时间花在毫无意义的事情上,死记硬背是靠不住的,关键时刻最容易出乱子,你一下子想不起,或对一个符号不敢确定,这一题就完了,而自己会推导就不一样了,一本书你要记的不过几个公式而已,从小学到高中真正要记忆的公式恐怕不会超过二十个吧。比如:面积公式,只要记住矩形和圆的面积公式就行了。
矩形面积=底X高(S=ab)。三角形面积如何从这推导呢?在矩形中划一条对角线,是不是得两个面积一样大的三角形?那当然就有:(S=ab/2)那梯形呢?在梯形中划一条对角线,是不是得两个三角形?而且它们的高相等?根据三角形面积公式就有S=ah/2+bh/2=(a+b)h/2。
有一点要说的是你在推导公式时用特殊的情况就行了,因为你不是证明。我已多年没接触课本了,对课本都已不了解了,如有什么问题大家可以共同探讨,共同进步。
4,要多做题,多思考,才能打开思维面。上面我反对作业不是叫你不要做作业,而是反对浪费时间去做那些对你来说一看就会毫无意义的作业。
你应当把这钟时间花在做真正要做的题目上。如果你确实觉得做作业是浪费时间,你可以向老师申请不做作业。
我想老师应当同意的(你们现在的老师应当比我们那时的老师开明得多了吧?)5,碰到好的题目时,要多思考一个问题:那就是——这个题是怎样提出来的?你能不能出一个相类似的题、或比它有所改变的题、或者有所提高的题。这样下次碰到这一题或与它相类似的题时你就能很容易的做出来了。
这也是训练发散思维的好方法。也是发明家最重要的思维方式了。
6,认真听讲,有不懂的问题及时向老师或。
2.怎样学习数学的证明题
证明一个命题,一般步骤如下:(1)按照题意画出图形;(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;(3)在“证明”一项中,写出全部推理过程。
一、直接证明
1、综合法
(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.
(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.
2、分析法
(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法. (2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.
二、间接证明
反证法
1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
2、反证法的特点:
反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.
3、反证法的优点:
对原结论否定的假定的提出,相当于增加了一个已知条件. 4反证法主要适用于以下两种情形:
(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;
(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形
命题的假设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。
3.怎么学好数学证明
数学是必考科目之一,故从初一开始就要认真地学习数学。
那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。
对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。
实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。
可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。
殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。
学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2’学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在。
4.数学常识中证明是怎么回事
证明就是表明一个定理为正确的过程,尽管这个过程本身可能并不简单。
这些数学论证经常是非常严格的,并且被用于证明某一命题是正确的。经过证明的命题的结果为定理。
有趣的是,现在正在研制几种计算机系统来使证明自动化。但是,一些数学家(大多数是纯粹主义者)并不认为这种由计算机辅助完成的证明是有效的;他们认为,只有人才能理解那些细微的差别,并且具有研究定理证明所需的直觉能力。
一个很好的例子是四色定理:它的证明依赖于计算机对许多单独的情况进行的精密的测试,所有这些测试都无法由人工来检验。
5.小学数学专业技能有哪些
1 数学教育哲学.与人生观、世界观对人的重要性一样,数学教育哲学对如何进行教学有着十分重要的影响,它包含什么是数学? 为什么进行数学教育? 应当怎样进行数学教育? 三个基本的问题.与具体的知识相比,数学教育哲学强调的是元认知的一部分,它渗透着隐含的认识论与本体论.2 作为学科的数学知识.一个专业的数学教师需要多少数学知识是很难回答的问题.但显然专业的数学教师应该需要货源充足和组织良好的数学知识仓库,其中良好的组织比数学知识更加重要.他应该能站在高观点下审视所教的数学知识,知道它们之间本质的联系和来龙去脉,应该有将数学知识转变为教育数学知识的能力,在不失严谨性的条件下将数学知识以最便于学生理解的形式教给学生.张景中院士认为,将数学知识转变为用于教育的数学不仅仅是教育的问题,更是数学的问题.3 数学教育学和数学教育心理学.数学教师掌握的不仅仅是一般的教育学和心理学而应该是它们与数学的整合.从开始的数学教学法到现在的数学教育研究,数学教育学在我国已成为一门比较成熟的学科.而数学教育心理学则是一门较新的学科.过去我们只关心教而忽视学生学的心理,虽然总结了一些经验却因为缺乏学生学习心理的研究未能上升到理论水平,而不能更好地发展运用.越来越多的研究表明,只有对学生学习数学的心理有较为清晰地了解,才能使学生更好的掌握数学知识和发展数学能力.4 数学教育技术学.将数学教育技术学单独列为一项,是因为以前的研究者很少提到教师的技术知识,更为重要的是兴起的信息技术已经直接影响到教什么和怎样教的问题.而根据我国数学教师的调查,只有27. 2%的教师经常使用计算机辅助教学.一个专业的数学教师不仅能熟练的运用信息技术来进行教学,而且还能很好地将信息技术和数学进行整合,并能教会学生运用技术来“发现”数学,创造数学.除了上述专业知识外,数学教师还应该具备普通的文化知识.此外相对于知识来讲教师的能力更为重要.因为教师面对的是能动的人.教育实践和教育情景都有生成性的特点,无固定的模式和技能技巧可以套用.教师必须凭自己的专业知识对灵活多变的教学情景创造性的作出自主判断和选择.这就需要数学教师的综合能力.三、数学教师怎样更好的实现专业发展 长期以来,研究者们一直致力于对教师专业发展范式的研究.不同的专业范式体现了教师专业发展的不同方向和目标.具体的说有“技术熟练者”范式,“研究实践者”范式,“反思实践者”范式三种.“技术熟练者”范式认为教学接近于医学和工程学,其专业属性在于其实践领域的科学知识与技术的成熟度以及实证效果.它认为专家教师的特质可以传递给一般教师,使其获得专业发展,从而成为优秀的教师.并且主张统一的教学标准,教师只能遵照执行而无权自己开发课程.目前,“技术熟练范式”在我国数学教师的专业发展中占有主导地位.但国内外相关研究表明,教师自身教学经验与反思才是教师专业发展最重要的来源,而不是专家和优秀教师的指导训练.专家教师的知识多是个人化的缄默知识,无法形式化和较好的传递给他人.这种缄默只能由主体在处理复杂和不确定的教育情境中形成.从另外一个方面来讲,教师永远处于生成性和暂时性的情境之中.教育情景复杂多变充满了不确定性和混沌性.固然一个数学教师必需拥有一些必备的技能,但教师对于教育的能力更为重要.所以,数学教师的专业发展必须进行范式转变,具体来说要注意以下几点:(一)数学教师要成为一个研究者 由于教学情景的不确定性,所以数学教师不仅要是一个实践者,更要是一个研究者.既要“思先于行”,又要“以行促思”.在研究实践中实现专业发展.斯滕豪斯认为,“教师是教室的负责人,而从实验主义者角度来看,教室正好是检验教学理论的理想实验室.无论从何种角度来理解教育研究,都不得不承认教师充满了丰富的研究机会”.专业的数学教师不应该将课堂看成是低水平的演练,而应该将自己的课堂组织成为大的探索,自主地进行一些数学教育改革试验,努力探索新型的、高效的、低耗的以素质教育为目标的数学教学的方法.青浦教学经验,MM教学法等等都是一线教师研究教学总结出来的好的教学方法.此外,数学教师还应该进行数学的研究.最好的教师就是那些在数学中有点像是曾经做过研究工作的人.通过研究经历发现的过程,加深对数学思想方法的认识,建立更好的数学知识体系,发现一些数学知识背后普遍的联系,还可以给出某些著名问题的新解法,发现并证明某些新的命题,提出某些新猜想新命题.初等数学应该是中学数学教师一个好的研究方向.张景中院士就是通过在中学教书时对平面几何的研究得出了用面积法解几何题的新思路并将其用于机器证明取得了巨大的成功.(二)数学教师应该是一个反思实践者 数学教师不仅要是一个研究者,还应该成为一个反思实践者.杜威认为“教师对于教学应该提出适当的怀疑而不是毫无批判的从一种教学方法跳到另外一种教学方法,教师应对实践进行反思”.他批判教育只是简单的教学生跟从现状.我们认为作为专业的数学教师,不仅应具有课堂教学知识、技巧和技能,。
6.数学证明证明:用数学相关理论证明1≠1,呵呵,真的可以证的呢,你
这个证明是不正确的,因为实际上零点九九循环与一是指同一个数,具体的不太好说明,因为涉及到整个实数体系的构筑,理论根基不一样,证明的前提就不一样。
用一个简单的方法说明一下这个问题,理论前提是:“两个不相等的实数之间可以插入一个实数。” 你试试看在零点九九循环与一之间可以插入实数吗,答案显然是否定的! 这只是一个十进制表达方法的一个悖论而已,其它进制也有类似的结论…… 楼主被绕进去了!楼主默认了一个实数只能有一种十进制表示,事实上这是不正确的,1就有2种表示形式(一般我们默认用1来表示)。
今天再来补充一些内容: 这个问题我小学或者初中的时候就已经想过了,实际上就是一个事物两种形态而已,我们不能说0。999……不等于1,事实上两者相等。
我建议你看看张筑生先生的《数学分析新讲》第一册的第一章的前几节,他是从十进制来构建实数体系的,用他的那种理论,你那个问题就称不上是一个问题了。 当然了,其他先生的著作你也可以看一看,或者自己构建一个实数体系。
呵呵,那个工程比较浩大。 Thomas Jech大师的《集合论》(Set Theory)也有构筑实数体系,那个更加抽象一些(基于公理化集合论),不过可以深入地对实数进行解剖。
我们往往把实数具体地看成是十进制小数,其实实数是一个相当抽象的概念,值得注意的是,十进制小数集合和其所对应的实数并没有构成一一对应的关系。也就是没有构成同构的关系。
可能,十进制小数集合的基数大于实数集的基数,我没有看到相关证明,而且也没有自己证明出来过。