1.全国重点大学数学专业的排名
武汉大学中国科学评价研究中心从2004年第一次发布中国大学竞争力排行榜以来,已经连续发布了三次。在三年大学评价研究的基础上,今年3月开始,中心继续集中优秀科研力量对我国大学教育的状况和水平进行了又一次较为全面、深入的研究,研发出了2008中国大学排行榜。
1 北京大学
2 清华大学
3 浙江大学
4 复旦大学
5 南京大学
6上海交通大学
7 武汉大学
8 南开大学
9 华中科技大学
10 中山大学
11 吉林大学
12 北京师范大学
13 中国人民大学
14 中国科学技术大学
15 四川大学
16山东大学
17 西安交通大学
18 厦门大学
19 哈尔滨工业大学
20 华东师范大学
21 同济大学
22 中南大学
23 天津大学
24 北京航空航天大学
25 东南大学
26大连理工大学
27 中国农业大学
28 西北工业大学
29 兰州大学
30 北京理工大学
31 重庆大学
32 湖南大学
33 华南理工大学
34 东北大学
35 南京师范大学
36中国地质大学
37 华东理工大学
38 华中师范大学
39 北京科技大学
40 东北师范大学
41 暨南大学
42 电子科技大学
43 上海财经大学
44 中国矿业大学
45 中国海洋大学
46西北大学
47 北京交通大学
48 上海大学
49 苏州大学
50 武汉理工大学
51 对外经济贸易大学
52 西南交通大学
53 西南大学
54 北京邮电大学
55 中国政法大学
56中国石油大学
57 云南大学
58 华中农业大学
59 南京理工大学
60 南京航空航天大学
61 郑州大学
62 北京化工大学
63 中央音乐学院
64 湖南师范大学
65 西安电子科技大学
66华南师范大学
67 北京外国语大学
68 中南财经政法大学
69 北京工业大学
70 南京农业大学
71 北京语言大学
72 中央民族大学
73 西南财经大学
74 中央美术学院
75 河海大学
76中国传媒大学
77 中央财经大学
78 上海外国语大学
79 北京中医药大学
80 东华大学
81 哈尔滨工程大学
82 国际关系学院
83 辽宁大学
84 燕山大学
85 中央戏剧学院
86西北农林科技大学
87 天津医科大学
88 华南农业大学
89 北京体育大学
90 陕西师范大学
91 中国药科大学
92 北京林业大学
93 安徽大学
94 湘潭大学
95 江苏大学
96广西大学
97 合肥工业大学
98 大连海事大学
99 南昌大学
100 西南政法大学
2.高中数学知识点详细总结
高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
高中数学知识
一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.
二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.
三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.
四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.
五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.
3.09重庆高考数学必备知识点
复数(第一个选择题 知道怎样化简)
不等式,函数(这两样常常结合考 不等式的公式,函数的图象等)导数(高考一定会用到)
三角函数的公式(第一道大题就是三角函数 正余弦定理,三角函数的图象,恒等变形,最值)
概率与统计(等可能事件,互斥事件,分布列,期望在第2道大题)
立体几何(线面角,面面角,异面直线距离,体积公式)
数列(等差、等比求和)
向量(这个会用就行,垂直,平行,定比分点)
圆锥曲线(其概念和性质,位置关系)与直线(斜率,夹角)
4.高中数学知识点及公式大全
这个不知道行不行啊?1、函数函数是历年高考命题的重点,集合、函数的定义域、值域、图象、奇偶性、单调性、周期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1)集合是近代数学中最基本的概念之一,集合观点渗透于中学数学内容的各个方面,所以我们应弄懂集合的概念,掌握集合元素的性质,熟练地进行集合的交、并、补运算.同时,应准确地理解以集合形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“ ”法,当然有一部分可以转化为函数 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、三角 三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如: ( )类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但 与 的符合是一致的.(4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如: = ; ; ; .(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相集合,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、不等式有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法.(2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:① 在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.② 在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、数列本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;计算 时,应分为 时, , 时, ;求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、复数高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复数几。