1.初中数学知识点大全,详细点的

初中数学知识点总结 一、基本知识 一、数与代数A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二。

2.高中数学知识点总结

总体分为十四个部分一·集合与一些简单的逻辑关系里面重要的是‘含绝对值的不等式及一元二次不等式的解法’,一定要搞透彻,其他的了解然后明白一切就行二·函数 1·函数的定义与性质,重要的是千万要记住它的定义域,还有的就是会用其性质。

2·一些特定的函数有反函数,二次函数,指数函数,对数函数。3·函数的图像问题以及函数的应用,一定要会数形结合法去解题三·数列 1·数列的概念 2·等差数列及其性质 3·等比数列及其性质 4·数列的综合应用 重点是那两个数列等差与等比的性质四·三角函数 1·任意的三角函数 2·三角函数的诱导公式 3·正余弦和正余切 5二倍角的一些公式 6·三角函数的图像及其性质 这一部分很重要全国一卷第一个大题就是与三角函数有关的五·平面向量 1.平面向量的概念及运算 2.基本定理和坐标表示 3.数量积 4.接三角形及其应用 5.最后是综合的应用 这一部分就是用于三角或是坐标的计算一般会在大题的第一问六·不等式 1.不等式的概念与性质 2.证明 3.解法 4.含绝对值的不等式 5.综合应用 这一节要好好学七·直线与圆的方程 1.直线的方程 2.两直线的位置关系 3.简单的线性规划 4.曲线与方程 5.圆及直线与园的位置关系 这是下一部分的基础八·解析几何(就是圆锥曲线方程) 1.椭圆 2.双曲线 3.抛物线 4.直线与双曲线的位置关系 5.轨迹问题 重点是搞明白圆锥曲线的那两个定义,尤其是第二定义,通常根据那个去求轨迹方程九·直线平面和简单几何题(立体几何) 1.平面空间两条直线 2.直线平面平行的判断及性质 3.直线平面垂直的判断及性质 4.空间中的角与距离 5.棱柱与棱锥 6.多面体与球 7.空间向量及其运算 8.空间向量的坐标运算 这一节肯定会有一个大题,还会有别的小题十·排列组合与概率 1.各种式子的应用 2.二项式定理 3.随机事件的概率 4.互斥事件 5.相互独立事件 这个也会有一个题十一·概率与统计 1.离散型随机变量的分布列 2.离散型随机变量的期望与方差 3.抽样方法与总体分布的估计 4.正态分布与线性回归 这一节也会有一个大题十二·极限 1.数学极限归纳法 2.数列的极限 3.函数的极限与函数的连续性 十三·导数 导数的概念运算与应用 一般会用于函数的单调性十四·复数 会有一个小题。

3.初中数学知识总结

我只能给你总结一些知识点,见谅见谅

初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这样的)。

代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的

几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。

以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)

4.初中数学知识点总结

证明两线段相等 1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。

证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 证明两直线平行 1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。 *10.在圆中平分弦(或弧)的直径垂直于弦。

*11.利用半圆上的圆周角是直角。 证明线段的和差倍分 1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。 3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。 5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明 角的和差倍分 1.与证明线段的和、差、倍、分思路相同。 2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。 证明线段不等 1.同一三角形中,大角对大边。

2.垂线段最短。 3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。 *5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。 证明两角的不等 1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

*4.同圆或等圆中,弧大则圆周角、圆心角大。 5.全量大于它的任何一部分。

证明比例式或等积式 1.利用相似三角形对应线段成比例。 2.利用内外角平分线定理。

3.平行线截线段成比例。 4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理—相交弦定理、切割线定理及其推论。 6.利用比利式或等积式化得。

证明四点共圆 *1.对角互补的四边形的顶点共圆。 *2.外角等于内对角的四边形内接于圆。

*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。 *4.同斜边的直角三角形的顶点共圆。

*5.到顶点距离相等的各点共圆。 (“*”代表重要) 请问、这种符合麽。

呵呵、希望能够帮到你。

5.初中数学学科基础重点

为形式化公理方法。

公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。

(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。

表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。

模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。

所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。

具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。

(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。

其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。

检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。

这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。

这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。

(三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。

近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。

数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。

这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。

这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。

教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。

第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。

推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或。

6.高中数学知识有哪些

高中数学必修一:主要是基本函数。

1.集合与函数的概念;2.基本初等函数:指数函数,对数函数,幂函数;3.函数的应用高中数学必修二:主要是空间几何。1.空间几何体;2.点、直线、平面之间的位置关系;3.直线与方程;4.圆与方程高中数学必修三:主要是概率和统计。

1.算法初步;2.统计;3.概率高中数学必修四:主要是三角函数和平面向量。1.三角函数;2.平面向量;3.三角恒等变换高中数学必修五:主要是数列和不等式。

1.解三角形;2.数列;3.不等式高中数学选修2-1:1.常用逻辑用语;2.圆锥曲线与方程; 3.空间向量与立体几何高中数学选修2-2:1.导数及其应用;2.推理与证明;3.数系的扩充与复数的引入高中数学选修2-3:1.计数原理;2.随机变量及其分布;3.统计案例。

7.人教版初中数学所学的所有知识点归纳

那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点:d,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)*180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,所对的弦 相等,因此k*(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式,是这个角的平分线 108到两条平行线距离相等的点的轨迹,这两条直线也互相平行 9 同位角相等、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,内错角相等 14 两直线平行,两直线平行 10 内错角相等,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),并且互相垂直平分,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆;同圆或等圆中,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) (还有一些,并且等于两底和的 一半 L=(a+b)÷2 S=L*h 83 (1)比例的基本性质 如果a,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点: ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线:d 84 (2)合比性质 如果a/b=c/d,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称、b的平方和,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,四条边都相等 70正方形性质定理2正方形的两条对角线相等,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,对称点连线都经过对称中心,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,那么这条直线平行于三角形的第三边 89 平行于三角形的一边, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、两条弧,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,如果它们的对应线段或延长线相交,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理。

8.初中数学知识大全

初中数学知识大全知识点1:一元二次方程的基本概念

1.一元二次方程3×2+5x-2=0的常数项是-2.

2.一元二次方程3×2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3×2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3×2-x-2=0.

知识点2:直角坐标系与点的位置

1.直角坐标系中,点A(3,0)在y轴上。 2.直角坐标系中,x轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限. 4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(-2,1)在第二象限.

知识点3:已知自变量的值求函数值

1.当x=2时,函数y=32x的值为1. 2.当x=3时,函数y=2

1x的值为1.

3.当x=-1时,函数y=3

21x的值为1.

知识点4:基本函数的概念及性质

1.函数y=-8x是一次函数. 2.函数y=4x+1是正比例函数. 3.函数xy2

1是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2

12xy的顶点坐标是(1,2).

7.反比例函数x

y2

的图象在第一、三象限. 知识点5:数据的平均数中位数与众数

1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

知识点6:特殊三角函数值

1.cos30°=

2

3. 2.sin260°+ cos260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.

5.cos60°+ sin30°= 1.

2

知识点7:圆的基本性质

1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.

9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.

4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.

6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.

知识点9:圆与圆的位置关系

1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦.

3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.

知识点10:正多边形基本性质

1.正六边形的中心角为60°. 2.矩形是正多边形.

3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形

/link?url=IeAUsOSGJArvo2jTQwT5J6krrtSeRP850wA8-99tEmSmbzdvFa256yDO1FIO6lhCXrLH5q-01C9SsdOSENF6gyASQ5lzgXTGvu_xir8R8sm 这里面有你要的

9.初中数学知识点

初中数学知识点 初中数学知识点集 一、数与式 (一)有理数 1、有理数的分类 2、数轴的定义与应用 3、相反数 4、倒数 5、绝对值 6、有理数的大小比较 7、有理数的运算 (二)实数 8、实数的分类 9、实数的运算 10、科学记数法 11、近似数与有效数字 12、平方根与算术根和立方根 13、非负数 14、零指数次幂、负指数次幂 (三)代数式 15、代数式、代数式的值 16、列代数式 (四)整式 17、整式的分类 18、整式的加减、乘除的运算 19、幂的有关运算性质 20、乘法公式 21、因式分解 (五)分式 22、分式的定义 23、分式的基本性质 24、分式的运算 (六)二次根式 25、二次根式的意义 26、根式的基本性质 27、根式的运算 二、方程和不等式 (一)一元一次方程 28、方程、方程的解的有关定义 29、一元一次的定义 30、一元一次方程的解法 31、列方程解应用题的一般步骤 (二)二元一次方程 32、二元一次方程的定义 33、二元一次方程组的定义 34、二元一次方程组的解法(代入法消元法、加减消元法) 35、二元一次方程组的应用 (三)一元二次方程 36、一元二次方程的定义 37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法) 38、一元二次方程根与系数的关系和根的判别式 39、一元二次方程的应用 (四)分式方程 40、分式方程的定义 41、分式方程的解法(转化为整式方程、检验) 42、分式方程的增根的定义 43、分式方程的应用 (五)不等式和不等式组 44、不等式(组)的有关定义 45、不等式的基本性质 46、一元一次不等式的解法 47、一元一次不等式组的解法 48、一元一次不等式(组)的应用 三、函数 (一)位置的确定与平面直角坐标系 49、位置的确定 50、坐标变换 51、平面直角坐标系内点的特征 52、平面直角坐标系内点坐标的符号与点的象限位置 53、对称问题:P(x,y)→Q(x,- y)关于x轴对称 P(x,y)→Q(- x,y)关于y轴对称 P(x,y)→Q(- x,- y)关于原点对称 54、变量、自变量、因变量、函数的定义 55、函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述 (二)一次函数与正比例函数 57、一次函数的定义与正比例函数的定义 58、一次函数的图象:直线,画法 59、一次函数的性质(增减性) 60、一次函数y=kx+b(k≠0)中k、b符号与图象位置 61、待定系数法求一次函数的解析式(一设二列三解四回) 62、一次函数的平移问题 63、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法) 64、一次函数的实际应用 65、一次函数的综合应用 (1)一次函数与方程综合 (2)一次函数与其它函数综合 (3)一次函数与不等式的综合 (4)一次函数与几何综合 (三)反比例函数 66、反比例函数的定义 67、反比例函数解析式的确定 68、反比例函数的图象:双曲线 69、反比例函数的性质(增减性质) 70、反比例函数的实际应用 71、反比例函数的综合应用(四个方面、面积问题) (四)二次函数 72、二次函数的定义 73、二次函数的三种表达式(一般式、顶点式、交点式) 74、二次函数解析式的确定(待定系数法) 75、二次函数的图象:抛物线、画法(五点法) 76、二次函数的性质(增减性的描述以对称轴为分界) 77、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系 78、求二次函数的顶点坐标、对称轴、最值 79、二次函数的交点问题 80、二次函数的对称问题 81、二次函数的最值问题(实际应用) 82、二次函数的平移问题 83、二次函数的实际应用 84、二次函数的综合应用 (1)二次函数与方程综合 (2)二次函数与其它函数综合 (3)二次函数与不等式的综合 (4)二次函数与几何综合 1,过两点有且只有一条直线 2,两点之间线段最短 3,同角或等角的补角相等 4,同角或等角的余角相等 5,过一点有且只有一条直线和已知直线垂直 6,直线外一点与直线上各点连接的所有线段中,垂线段最短 7,经过直线外一点,有且只有一条直线与这条直线平行 8,如果两条直线都和第三条直线平行,这两条直线也互相平行 9,同位角相等,两直线平行 10,内错角相等,两直线平行 11,同旁内角互补 两直线行 12,两直线平行,同位角相等 13,两直线平行,内错角相等 14,两直线平行,同旁内角互补 15,三角形两边的和大于第三边 16,三角形两边的差小于第三边 17,三角形三个内角的和等180° 18,直角三角形的两个锐角互余 19,三角形的一个外角等于和它不相邻的两个内角的和 20,三角形的一个外角大于任何一个和它不相邻的内角 21,全等三角形的对应边,对应角相等 22,有两边和它们的夹角对应相等的两个三角形全等 (SAS)23 有两角和它们的夹边对应相等的两个三角形全等(ASA) 24,有两角和其中一角的对边对应相等的两个三角形全等(AAS) 25,有三边对应相等的两个三角形全等 (SSS)26,有斜边和一条直角边对应相等的两个直角三角形全等(HL) 27,在角的平分线上的点到这个角的两边的距离相等 28,到一个角的两边的距离相同的点,在这个角的平分线上 29,角的平分线是到角的两边距离相等的所有点的。

10.高中数学必考知识总结

高考的重点一般在 常用函数 常用双曲线+直线 数列 三角 二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分 重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的 难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10% 如果数学是弱项就一定要重视知识的反复整理和练习 不一定要以制做题 而是要把做错的题目和典型的题目反复练习 基本的方法和解题思路是很重要的 还有就是 不能放弃 数学学科要有明显提高一定有一个过程 一般是半个学期到一个学期的时间 如果一旦放弃就功亏一篑了 高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了. 必修的: 代数部分有: 1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题 2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象 3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了 4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程. 哎对不起啊现在我也高三总复习了一说就随口说了这么多,其实你不用知道那么多,三年呢自然而然就都学了. 现在建议你最好能对数学感兴趣,自己暗示自己一下;上课认真听讲,把知识记牢,免得以后补很麻烦;学会总结,抓住知识之间的联系 数学是必考科目之一,故从初一开始就要认真地学习数学。

那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

中学数学学科专业知识总结-编程日记