1.初中数学教师资格证专业知识考什么
教师资格考试统考学科专业知识考试大纲:
《数学学科知识与教学能力》(初级中学)
一、考试目标
1.学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《义务教育数学课程标准(2011年版)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
1.学科知识
数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。
其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识
了解初中数学课程的性质、基本理念和目标。
熟悉《课标》所规定的教学内容的知识体系,掌握《课标》对教学内容的要求。
能运用《课标》指导自己的数学教学实践。
3.教学知识
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握合作学习、探究学习、自主学习等中学数学学习方式。
掌握数学教学评价的基本知识和方法。
4.教学技能
(1)教学设计
能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系。
能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。
能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。
能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。
(2)教学实施
能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流。
能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学。
能结合具体数学教学情境,正确处理数学教学中的各种问题。
(3)教学评价
能采用不同的方式和方法,对学生知识技能、数学思考、问题解决和情感态度等方面进行恰当地评价。
能对教师数学教学过程进行评价。
能够通过教学评价改进教学和促进学生的发展。
2.数学学科知识与教学能力初中怎么学习
一、考试目标
1.数学学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《全日制义务教育数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
初中数学教师教学知识与能力考试内容主要有数学学科知识、数学课程知识、数学教学知识和数学教学技能。
具体考试内容和要求如下:
1.数学学科知识
数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
3.初中数学学科基础重点
为形式化公理方法。
公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。
(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。
表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。
模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。
所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。
具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。
(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。
其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。
检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。
这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。
这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。
(三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。
近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。
数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。
这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。
这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。
教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。
第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。
推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或。
4.教师考编《学科专业知识》如何复习
1.教育基础知识(教育理论及应用)。
根据中学、小学、幼儿园教师岗位的不同要求,分别命制试题。2.学科专业知识(学科知识与教学)。
分三个层次,由考生根据报考层次、学科选考一科:高中、初中阶段:语文、数学、英语、政治、历史、地理、物理、化学、生物、信息技术(以上科目高中、初中相同)、科学、社会(后两科仅报考初中教师者选考)。小学阶段:语文、数学、英语。
教师招聘考试复习资料幼儿园阶段:学前教育。1.教育基础知识。
包括教育学、心理学、教育政策法规等。2.学科专业知识。
包括所报考对应层次学科教学内容、高等师范教育对应学科内容(含教材教法)等。确认自己所需备考科目后,开始着手准备相应资料。
但是还是建议您在中公教育报个辅导班,您可以到当地的中公教育咨询一下。
5.初中教师资格证考数学专业知识考高数吗
考的。
初中教师资格考试数学学科知识:
大学专科数学专业基础课程知识:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
高中数学课程中的必修内容和部分选修内容以及初中数学课程知识:高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数 方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。
扩展资料:
我们国家规定
(一)取得幼儿园教师资格,应当具备幼儿师范学校毕业及其以上学历;
(二)取得小学教师资格,应当具备中等师范学校毕业及其以上学历;
(三)取得初级中学教师、初级职业学校文化、专业课教师资格,应当具备高等师范专科学校或者其他大学专科毕业及其以上学历;
(四)取得高级中学教师资格和中等专业学校、技工学校、职业高中文化课、专业课教师资格,应当具备高等师范院校本科或者其他大学本科毕业及其以上学历;取得中等专业学校、技工学校和职业高中学生实习指导教师资格应当具备的学历,由国务院教育行政部门规定;
(五)取得高等学校教师资格,应当具备研究生或者大学本科毕业学历;
(六)取得成人教育教师资格,应当按照成人教育的层次、类别,分别具备高等、中等学校毕业及其以上学历。
打印准考证
打印准考证,系统会根据考生报名信息生成准考证。根据提示下载pdf准考证文件。下载后,仔细核对个人信息,并直接打印成准考证。2015上半年教师资格考试准考证打印时间是3月9日-3月15日。
参加考试
注意:(有些地方考教育学,教育心理学,教师职业道德,教育政策法规)
1.非师范类学生要取得教师资格,必须加试教育学和教育心理学,所以你准备复习参加教育部门举办的考试。
2.教师资格证的考试属于地方考试,但可全国通用,取得了任何地方都承认。
3.教师资格证只是从业证书,只要你能通过2(4)门理论考试,并且取得普通话合格证书,然后申请自己想要教的科目,那需要个试讲,通过后,还要参加体检,体检合格后就可以得到你想要的专业资格证书。
参考资料:搜狗百科-教师资格证