1.教师招考考试中,小学数学的专业知识怎样复习
一、重视基础,深入理解
在考前一个月,如果大家还对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。所以大家务必在最后完全吃透基础理论知识,深入地理解基本概念、公式、定理、图表的理解,掌握知识点,将数学知识进行分类,在自己的头脑中有一个完整的体系。
二、掌握方法,提高能力
利用最后一个月的时间来拓展解题方法,提高解题能力。把知识体系化、连贯化,并拓展做题方法及思路,熟悉考试出题方式。尤其是解综合性试题和应用题能力。大家要搞清有关知识的纵向、横向联系,形成一个有机的体系。同时,也要提高做题质量,每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。
三、选择题答题技巧
掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择题提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。其次,审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。再次,辨析选项,排误选正。最后,要正确标记和仔细核查。
(1)特值法。在选择题的选项中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(2)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。
(3)特殊法。当对某一选择题没有把握时,可以采用此方法。要注意寻找线索,如果其他选项大体相当,唯有某一个选项特别长或特别短,那它成为正确答案的可能性很大。
(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以创造更多的得分机会,特别是最后一个选择题。
2.小学数学专业知识答辩问题有哪些内容
小学数学答辩题及参考答案 01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。
B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。
现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。
在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。
02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。 B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)*15 03 A、请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。
B、下面各题的商是几位数,确定上的位数有什么规律?(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。
如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。 04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。 B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。
252与173的和乘以8,再除以2,商是多少? (1)(252+173)*(8÷2) (2)(2)(252+173*8)÷2 (3)(3)(252+173)*8÷2 (4)(4)252+173*8÷2(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少? 05 A、《数学课程标准》在学生学习数学的方式上有何? 有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
B、举例说明整除和除尽有什么关系? 整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷0.2=10 因为0.2是小数,不是自然数,只能说2能被0.2除尽,或0.2能除尽2,不能说整除。
07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。
B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。
整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。
08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
B、在研究近似数时,为什么2和2.0不一样?在研究近似数时,一定要注意精确到那一位。2是精确到个位,2.0是精确到十分位;2.0比2精确。
从四舍五入法得到的近似数来考虑,2和2.0不一样。近似数2是由不小于1.5,小于2.5之间的数精确到个位得到的;而近似数2.0是由不小于1.95,小于2.05之间的数精确到十分位得到的;近似数2.0的取值范围比近似数2的取值范围小,所以近似数2.0比2更精确。
09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段? 分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。 (1)按整数部分来分类:小数分为纯小数和带小数。
(2)按小数部分的位数来分类:有限。
3.小学数学应用题
六年级行程问题综合(一)1.A、B两地相距720千米,大、小两辆汽车相向而行。
如果大车先行1.5小时,小车再出发,两车就在中点相遇;若两车同时相向而行,5小时后,两车还相距180千米。大、小两辆汽车每小时各行( )多少千米。
2.两辆汽车从A地同时出发开往B地,快车比慢车每小时多行6千米。快车比慢车早30分钟通过中途的C地,当慢车到达C地时,快车已经又行了30千米并刚好到达B地。
A、C两地的距离是( )。3.甲、乙两车同时从A、B两地相向而行,两车第一次在距A地32千米处相遇,相遇后两车继续行驶各自到达B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇。
则A、B两地间的距离是( )千米。4.有一项工程,甲队单独做20天可以完成,乙队单独做30天可以完成。
现在由甲乙两队合作来做完成这项工程,合作中甲队休息了4天,乙队休息了若干天,前后共15天完工。则乙队休息了( )天。
5.甲、乙两车都是从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离,乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地,最后乙车比甲车晚4分钟到达C地。
那么,乙车出发( )分钟时,甲车就超过了乙车。6. 某晚突然停电,房间里同时点燃了两支粗、细不同,但长短相同的蜡烛。
当来电时,同时吹灭两支蜡烛,发现其中较粗的那支蜡烛的剩余的长度是较细的蜡烛剩余长度的3倍。已知较粗的蜡烛从点燃到燃尽可维持5小时,较细的那支可维持3小时。
这次停电持续了( )小时。7. 喜羊羊、美羊羊、懒羊羊它们分别从甲地驾船顺水航行地到乙地,喜羊羊用了6小时,喜羊羊、美羊羊、懒羊羊在顺水中划行的速度之比是5:4:3,那么懒羊羊从甲到乙顺水划行用了多少小时?8. 有一长方形跑道ABCD,甲从顶点A出发,乙从C点出发,两人都按顺时针方向奔跑。
甲每秒跑5米,乙每秒跑4.5米,当甲第一次追上乙时,甲跑了( )圈。9.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米、20千米、19千米。
快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?10.小华以匀速于10∶18离开A市而在13∶30抵达B市。同一天,小明也以匀速沿着同一条路于9∶00离开B市而在11∶40抵达A市。
这条路中途有一座桥,小华与小明同时抵达桥梁的两端,两人继续行走之后,小华比小明晚1分钟离开桥梁。请问他们于几点几分同时抵达桥梁的两端。
11. 草地上有一个长20米宽10米的关闭着的羊圈,在羊圈的一角用长为30米的绳子拴着一只羊,这只羊的活动范围有( )平方米。12. 张师傅上班坐车,回家步行,路上一共用了80分钟,如果往返都坐车,全部行程要50分钟,如果往返都步行,全部行程要( )分钟。
13. 甲乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比是3 :4,已知甲行了全程的,离相遇地点还有20千米,相遇时甲比乙少行( )千米。14 .甲每分钟行85米,乙每分钟行77米,丙每分钟行65米。
现在甲从东地,乙、丙从西地同时出发相向而行,甲和乙相遇后,又过4分钟,甲与丙再相遇。东西两地相距( )米。
15.A、B两城相距56千米。有甲、乙、丙三人。
甲、乙从A城,丙从B城同时出发。相向而行。
甲、乙、丙分别以每小时6千米、5千米、4千米的速度进行。求出发后经多少小时,乙恰好在甲丙之间的中点。
16.小明、小军、小丽三人同时同向从同一地点沿着周长400米的环行跑道跑步,每分钟小明跑300米,小军跑260米,小丽跑100米,最少经过( )分后三人又可以相聚。17.甲、乙两车分别从A、B两地同时出发,相向而行。
甲车每小时行45千米,乙车每小时行36千米。相遇以后,两车继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶。
已知途中第二次迎面相遇地点与第三次迎面相遇地点相距60千米。则A、B两地相距 千米。
18.甲、乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比是3∶4,已知甲行了全程的,离相遇地点还有20千米,相遇时甲比乙少行( )千米。19. 某登山队登一座险峰,第一次攀登了全程的多2米,第二次攀登了余下的少1米,第三次登完最后的73米,登山队员攀登的险峰全程有( )米。
20.甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。甲在公路上A处,乙、丙同在公路上B处,三人同时出发,甲与乙、丙相向而行。
甲和乙相遇3分钟后,甲和丙又相遇了。A、B两地之间的距离是( )米。
21.动物园里有一棵8米高的大树。两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米。
稍大的猴子先爬到树顶,下来的速度比原来快了2倍。两只猴子距地面( )米的地方相遇。
22.兄弟两人骑马进城,全程51千米。马每小时行12千米,但只能由一个人骑。
哥哥每小时步行5千米,弟弟每小时步行4千米。两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行。
而步行者到达此地,再上马前进。如果他们早晨六点动身,( )能同时到达城里。
23.甲、乙两辆车的。