1.初中数学知识点大全,详细点的

初中数学知识点总结 一、基本知识 一、数与代数A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二。

2.高中数学全部知识点

一、集合、简易逻辑(14课时,8个)1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件.二、函数(30课时,12个)1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例.三、数列(12课时,5个)1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例.五、平面向量(12课时,8个)1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移.六、不等式(22课时,5个)1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归.十三、极限(12课时,6个)1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性.十四、导数(18课时,8个)1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.十五、复数(4课时,4个)1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法 答案补充 高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查. 现在的我们学数学比前人幸福啊!! 最后,我建议你经常上这个网站啦,.cn ,相信对你的学习会有帮助的,祝你成功!答案补充 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点–费马点。

到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。

几何不等式。 简单的等周问题。

了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合。

3.高中数学知识点详细总结

高中数学重点有什么?该怎样攻克?

高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.

高中数学知识

一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.

二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.

三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.

四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.

五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.

向量讲解

其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.

4.高中数学所有知识点归纳

高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。

(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。

⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面。

5.求初中数学所有知识点

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数 无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中。

6.怎么才能把数学知识点背会

数学学习方法这里我们讲一下数学学习的方法.这是我们应用国外的快速学习方法,根据数学学科特点提出来的.由于代数学习法和几何学习法的不同,我们分别进行讨论.一、代数学习法.抄标题,浏览定目标.阅读并记录重点内容.试作例题.快做练习,归纳题型.回忆小结二、几何学习四大步.1.①书写标题,浏览教材②自我讲授,写出目录2.①按目录,读教材②自我讲授几何概念及定理3.①阅读例题,形成思路②写出解答例题过程4.①快做练习.②小结解题方法.三.数学概念学习方法.数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度.数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式.一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断.这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习.下面我们归纳出数学概念的学习方法:阅读概念,记住名称或符号.背诵定义,掌握特性.举出正反实例,体会概念反映的范围.进行练习,准确地判断.四、学公式的学习方法公式具有抽象性,公式中的字母代表一定范围内的无穷多个数.有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里.教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式.我们介绍的数学公式的学习方法是:书写公式,记住公式中字母间的关系.懂得公式的来龙去脉,掌握推导过程.用数字验算公式,在公式具体化过程中体会公式中反映的规律.将公式进行各种变换,了解其不同的变化形式.将公式中的字母想象成抽象的框架,达到自如地应用公式.五、数学定理的学习方法.一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题.下面我们归纳出数学定理的学习方法:背诵定理.分清定理的条件和结论.理解定理的证明过程.应用定理证明有关问题.体会定理与有关定理和概念的内在关系.有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行.六、初学几何证明的学习方法.在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展.看题画图.(看,写)审题找思路(听老师讲解)阅读书中证明过程.回忆并书写证明过程.七 .提高几何证明能力的化归法.在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧.这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的.化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束.此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程.提高几何证明能力的化归法:1.审题,弄清已知条件和求证结论.2.画图,作辅助线,寻找证题途径.3.记录证题途径的各个关键步骤.4.总结证明思路,使证题过程在大脑中形成清淅的印象.八、波利亚解题思考方法.预见法收集资料,进行组织.辨认与回忆,充实与重新安排.分离与组合.回顾解答问题法.弄清问题.拟定问题.实现计划.回顾.解题过程自问法.我选择的是怎样的一条解题途径.我为什么作出这样的选择?我现在已进行到了哪一阶段?这一步的实施在整个解题过程中具有怎样的地位?我目前所面临的主要困难是什么?解题的前景如何?九 、数学学习的基本思维方法.1. 观察与实验2.分析与综合3.抽象与概括4.比较与分类5.一般化与特殊化6.类比联想与归纳猜想十、理解、巩固、应用、系统化四步学习法1.理 内容,标志,阶段,过程.2.巩 固:透彻理解,牢固记忆,多方联想,合理复习.3.应 用:理论,实践,具体,综合.4.系统化: ①明确系统内部各要素的属性.②使各要素之间形成多方的联系.③概括各要素的各种属性,形成整体性.④同化于原知识系统之中.十一、高效学习方法在数学学习中的应用超级学习方法请采纳,谢谢。

7.我想知道高中数学的知识点总结

必修2数学知识点1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的表面积与体积⑴圆柱侧面积; ⑵圆锥侧面积:⑶圆台侧面积:⑷体积公式:; ;⑸球的表面积和体积:。

第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 4、公理4:平行于同一条直线的两条直线平行。

5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。

9、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

10、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

11、线面垂直:⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

第三章:直线与方程1、倾斜角与斜率:2、直线方程:⑴点斜式:⑵斜截式:⑶两点式:⑷一般式:3、对于直线:有:⑴ ;⑵ 和 相交 ;⑶ 和 重合 ;⑷ 。 4、对于直线:有:⑴ ;⑵ 和 相交 ;⑶ 和 重合 ;⑷ 。

5、两点间距离公式:6、点到直线距离公式:第四章:圆与方程1、圆的方程:⑴标准方程:⑵一般方程:。2、两圆位置关系:⑴外离:;⑵外切:;⑶相交:;⑷内切:;⑸内含:。

3、空间中两点间距离公式:。

知道数学专业知识点-编程日记